Invariant spinor representations of finite rotation matrices
نویسندگان
چکیده
منابع مشابه
The orthogonal real representations of the Poincare group
DRAFT VERSION The Majorana spinor is an element of a 4 dimensional real vector space. The Majorana spinor representations of the Rotation and Lorentz groups are irreducible. The spinor fields are space-time dependent spinors, solutions of the free Dirac equation. We define the Majorana-Fourier transform and relate it to the linear momentum of a spin one-half Poincare group representation. We sh...
متن کاملRotations of 4nπ and the Kinematic Design of Parallel Manipulators
For parallel manipulator systems a fundamental distinction is drawn between displacement and motion. The former is a spatial relation adequately modelled by standard vector and matrix algebra. The latter is a spatial trajectory whose ‘history’ also requires modelling. Quaternion, spinor and Clifford algebra representations are utilised for this purpose specifically for rigid body finite rotatio...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کامل